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Abstract. A possibility of intermediately bound excitons in semiconductors doped with
transition metal impurities is considered. These sorts of exciton can appear in hexagonal
(wurzite-type) semiconductors due to strong hybridization of the conduction band states and
the impurity d states. In tetrahedral (zinc blende) semiconductors this hybridization is strongly
suppressed due to a symmetry consideration. It is shown that the exciton hole in ZnS:Ni (zinc
blende type) is bound by the Coulomb field of the exciton electron and may be considered within
the framework of the hydrogen-like model. As for CdS:Ni (wurzite type) the orthogonalization
central cell pseudopotential appears to be the leading attracting potential for the hole. These
differences in the binding mechanisms account for striking differences measured experimentally
in the structure of the exciton spectra and values of theg-factors of these two presumably similar
systems.

1. Introduction

Bound electron–hole pairs, i.e. excitons, are typical excitations of electronic subsystems
of semiconductors and molecular crystals. Two types of exciton are usually distinguished.
These are Frenkel excitons, strongly localized within an atomic distance and observed
mainly in molecular crystals, and Wannier excitons in semiconductors whose localization
radius essentially exceeds the lattice spacing and whose wave functions can be described
within the framework of the effective mass theory.

Defects and impurities can bind free Wannier excitons. The excitons bound to charged
centres are characterized by a rather large localization radius, so these states are well
described by the effective mass theory. Neutral isoelectronic impurities are also capable of
binding excitons [1]. In this case one of the carriers is trapped by the short-range potential
of the impurity and has a smaller localization radius. The second carrier is now attracted
by the Coulomb potential of the first one.

Unlike the simple neutral impurities, the isoelectronic transition metal impurities capture
one carrier in their electrically active d shell, i.e., in the deep level created by this impurity,
and the second carrier is again attracted by the Coulomb potential of the first one. Such
bound excitons are observed as lines in the excitation spectra in the low energy onset of the
charge transfer band. Involvement of the impurity d shell in formation of the bound exciton
is manifested, e.g., in a possibility of multicharge states of the transition metal impurities
and in amphoteric behaviour of the excitons [2]. The reaction

dn + hν ⇒ [dn+1, h]
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produces an acceptor-type exciton while a donor-type exciton is produced by the reaction

dn + hν ⇒ [dn−1, e].

Properties of the excitons bound to transition metal impurities in semiconductors are
reviewed in [3, 4].

An idea of intermediately bound excitons when both carriers are captured at
intermediate-radius orbitals is empirically formulated in recent experimental studies of
exciton luminescence in ZnS and CdS doped by Ni [5] (see also experiments on Cu [6, 7]).
Attention was drawn in these papers to the fact that the properties of the excitons bound to
Ni impurities behave differently in these two apparently similar semiconductors. The most
important differences are the following.

(i) The zero-phonon line in both systems is split into a triplet but with strongly differing
g-factors: g = 0.5 for ZnS:Ni andg = 2.26 for CdS:Ni.

(ii) The excitation spectra of ZnS:Ni are more complicated than those of CdS:Ni.
(iii) The binding energy of the loosely bound carrier is estimated as about 20 meV [8]

or 108 meV [5] for ZnS:Ni and its value is found to be≈140 meV for CdS:Ni.

The assumption of different localization radii of excitons in ZnS:Ni and in CdS:Ni gave the
authors of [5] the possibility of explaining these features, at least phenomenologically.

The aim of this paper is to present a microscopical theory of excitons intermediately
bound to transition metal impurities and to explain the origin of the different properties of
the bound excitons in zinc blende and wurzite crystals doped with Ni. The differences listed
above will be shown to be connected to the different symmetries of these two materials:
zinc blende, ZnS, crystallizes in a tetrahedral lattice (Td group), whereas CdS has a wurzite
type lattice (C6v hexagonal group). The lower symmetry of the crystalline environment
of the substitutional Ni impurity in the trigonal CdS versus tetrahedral ZnS results in an
essential modification of the wave functions of electrons localized around the Ni impurity
and eventually in a transformation of the deeply bound excitons into intermediately bound
ones and in partial ‘equalizing’ of the behaviour of the electron and the hole constituting
the bound exciton. This equalization means that, unlike the standard cases of excitons
bound to neutral impurities, both bound carriers acquire features of localized deeply bound
d states. It will be shown that such equalization can explain anomalous features of the
exciton luminescence spectra in CdS:Ni compounds including the change of the exciton
g-factor in comparison with ZnS:Ni. A preliminary report on this work was published in
[9].

2. Model

The excitons intermediately bound to 3d impurities are similar in many aspects to those
deeply bound to usual neutral impurities. Both are characterized by multielectron impurity
configurations [A(−)(dn + e), h] for the acceptor- and [A(+)(dn + h), e] for the donor-type
excitons. Here A(∓) represents the impurity configuration whose d shell either possesses
an extra electron or lacks it. Using the quasiatom model [10] based partially on the
formalism of conventional strong-crystal-field theory, the multielectron wave functions of
these configurations can be written as

9
(ex)
0 (dn−1, e) = Â

∑
0′γ

C00′γ9i0′(d
n−1)ψ(e)

γ

9
(ex)
0 (dn+1, h) = Â

∑
0′γ

C00′γ9i0′(d
n+1)ψ(h)

γ .
(1)
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HereC00′γ are the Clebsch–Gordan coefficients realizing the direct product0 of the multi-
electron wave functions corresponding to the0′(dn±1) irreducible representations and the
loosely boundγ electron or hole.Â is the antisymmetrization operator.

The Ni impurity may form an acceptor-type bound exciton, [dn+1, h] in ZnS and CdS
[3, 5] with the binding energy defined as

Ebex = E(d(n+1), h)− E(d(n)). (2)

The single-electron functions used to construct the multielectron functions (2) are
eigenfunctions of the impurity Hamiltonian

He = T̂ + Vd(r −R0)+ U ′(r −R0)+ U1{1ρ(r)} (3)

whereT̂ is the electron kinetic energy operator,Vd(r −R0) is the substitutional impurity
potential, andU ′(r − R0) is the lattice crystal field potential acting on the impurity.
U1{1ρ(r)} is the potential due to the distorted valence electron density. The multielectron
wave function90′ of the d shell is treated using the conventional Russel–Saunders scheme.

The hole wave functionψ(h)
iγ is an eigenfunction of the Hamiltonian−Hv(r) of the

valence band with one electron removed. As a result, the acceptor bound exciton can be
described by the(n + 2)-particle wave function which corresponds to the configuration
[d(n+1), h] of the impurity ion. After excluding the ‘core’ part of the impurity pseudoion,
dn, the general Schrödinger equation is reduced to the following two-particle equation:

[He(r1)−Hv(r2)+ U(r1− r2)− EexI ]Âψ(n+1)
i0′ (r1)ψ

(h)
iγ (r2) = 0 (4)

where the exciton energy is just the difference

EexI = EV (N − 1)+ Ei0′(dn+1)− EV (N)− Ei0(dn) (5)

of the total energies of the system with and without the exciton. It is to be determined from
equation (5). The total energy of the system with the exciton includes the energyEV (N) of
the valence band completely filled byN electrons and the energyEi0(dn) of then-electron
ground state of the neutral impurity atom. A bound exciton is formed by a hole in the valence
band with the energyEV (N−1) and by the(n+1)th electron in the potentialUdγ (r) created
by the dn core of the impurity d shell. The energy of the latter becomesEi0′(dn+1) whereas
its (n+1)-electron wave function isψ(n+1)

i0 (r). U(r1−r2) = e2/ε|r1−r2| is the Coulomb
electron–hole interaction.

Since the electron wave function even in an intermediate-radius exciton is more localized
than the hole wave function, first the single-electron Schrödinger equation

(He + Ei0′(d(n))− E)ψ(n+1)
iγ (r) = 0 (6)

is considered, the electron–hole Coulomb interaction,U(r1 − r2), being neglected. This
equation determines the position of the levelE

(n+1)
iγ̄ of the (n+ 1)th bound electron and its

wave functionψ(n+1)
iγ̄ (r).

Similarly, the equation[
−
(
T̂ +

∑
j

U ′(r −Rj )+ Udγ (r)
)
− U(r)− Eh

]
ψ
(h)
iγ (r) = 0 (7)

can be derived from equation (4) for the hole wave function, whereEh = E −E(n+1)
iγ̄ . The

Coulomb potentialU(r) arises due to the interaction between the hole and the(n + 1)th
electron in the d shell of the impurity ion.

In the case of a conventional isoelectronic d impurity, equations (6) and (7) result in a
standard bound exciton picture described, e.g., in [1, 11, 12]. Many of their features were
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analysed in [2, 13], but the possibility of forming a pair with comparable radii of electron
and hole in a hexagonal host crystal needs a special consideration, so this mechanism should
be revisited. A special attention will be paid to a short-range central cell pseudopotential
which will be shown to play an important part in the formation of a bound exciton in the
CdS host. For this sake we consider the properties of an electron and hole bound by a Ni
impurity in ZnS and CdS more carefully. The neutral Ni impurity in II–VI semiconductors
has a d8 configuration, thus we start withn = 8 in equations (2) and (4)–(6). A negatively
charged nickel ion, Ni(−)(d9), produces localized states in the upper part of the forbidden
energy gap in the majority of II–VI compounds. The level energyEi(0/−) is found to be
≈1 eV under the bottom of the conduction band of ZnS:Ni and very close to the bottom
of the conduction band in CdS:Ni. This ninth electron plays the role of a relatively tightly
bound carrier which creates an attractive potential for a more or less loosely bound hole. In
the two following sections we will consider the difference between degrees of localization
of these two partners in zinc blende and wurzite host crystals.

3. The tightly bound electron

It is known from the general theory of 3d impurities in semiconductors [15–18] that the shape
of the impurity wave function and the position of the impurity deep level are determined
largely by the covalent hybridization of the impurity d orbitals with the band states of the
host material (a detailed discussion of the problem is presented in the review [14] and in
the book [4]). To find the solution of equation (6) one should use the set of functions
{ψ̃kaσ , ψγ̄µ} in the expansion of the localized electron wave function. This set includes
the wave functions,ψγ̄µ, of the atomic d electrons in the local crystal field along with the
Bloch functions, which should be orthogonalized to the d electron wave functions

ψ̃kaσ = ψkaσ −
∑
γµ

〈γµ|kaσ 〉ψγµ.

The state of the ninth electron in theNi(−) d shell corresponds to at2 representation
(γ̄ = 05), and the electron states of the05 representation in the heavy-hole band give the
dominant contribution to the hybridization. Then the energy levelε

(9)
05

of the electron in the
d9 shell is given by the equation

Ei05 = ε(n+1)
05
+1U +Mv(Ei05) (8)

where the potential part of the impurity scattering is omitted in comparison with the resonant
scattering by the d level of the unfilled impurity shell. Here

Mv(Ei05) =
∑
k

|V05v(k)|2
Ei05 − εvk

. (9)

The ninth electron ionization energy is defined as

ε
(9)
05
= E(d9)− E(d8)

1U is the renormalization due to the response of the host states to the excess impurity
charge [15], and

V05v(k) = 〈k̃v|U ′(r −R0)|05µ〉 (10)

is the hybridization matrix element responsible for mixing of atomic and band states in the
above basis.
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The wave function of the ninth electron consists of a localized ‘core’ and an extended
‘Bloch tail’,

ψ
(9)
i05
=
[

1

/√
(1+ M̃ ′v05

)

] [
ψdt2 +

√
M̃ ′v05

ψbt2

]
(11)

where

M ′vγ = −dMv(Eiγ )/dEiγ . (12)

Hereψdt2 is the atomic d-electron wave function, and the properties of the Bloch tailψbt2(r)
are described in the appendix.

First, we consider the zinc-blende-type crystals of Td point symmetry. It is known
[4, 14] that the states in the lower part of the conduction band only weakly influence the
electronic structure of 3d impurities in zinc blende crystals since these states are formed
predominantly by the s orbitals, which can form only nonbonding states with the transition
metal d orbitals. As a result the hybridization matrix elements (10) are proportional to the
absolute valuek of the wave vector near the bottom of the conduction band. Neglecting this
term inψbt2(r) and keeping in mind that the heavy-hole band gives the leading contribution
among the valence bands, one can approximately write the impurity wave function as an
antibonding combination of the atomic d function,ψd , and the Bloch tail,ϕp, of p symmetry.

ψi05 '
[

1

/√
1+M ′v05

] [
ψd −

√
M ′v05

ϕp

]
. (13)

Thus the impurity level position should be counted from the top of the valence band. In
this sense the level in the upper part of the forbidden energy gap appears to be very deep.
This means that the Bloch tailϕp of the wave function (13) is rather short range and it has
a rather small weight in the impurity wave function (13) as compared to that of the atomic
d function,ψd . This weight is proportional to the factorM ′v05

(shown in figure 1) which
decreases with increasing distance from the top of the valence band.

Figure 1. A schematic representation of the energy dependence of the functionM(E) (9) (a) and
its derivativeM ′(E) (12) (b) in a zinc-blende-type crystal. One can see that both the function
M(E) and its derivativeM ′(E) are smooth near the conduction band edge since hybridization of
d states with the conduction band states is symmetry forbidden. As a result a possible influence
of the van Hove edge singularity is suppressed.

Quite different is the situation with the same level in a hexagonal environment of the
wurzite lattice. Both the states at the top of the valence band and at the bottom of the
conduction band transform according to the07 representation of the crystal group C6v.
When introducing an impurity in a cation position the symmetry group is lowered to C3v

and this group is used to classify the localized states. Then the irreducible representation
04 of the C3v point group takes the place of the representation07 of the C6v group. As



5360 P Dahan et al

a result the wave function of the ninth electron in the d shell of a charged Ni(−)(d9) ion,
which transforms according to the representation04, hybridizes strongly with both valence
and conduction band states so that both matrix elementsṼ04c andṼ04v ∼ constant atk→ 0.

Then the important parameter for comparison of the valence and conduction band
contributions to the Bloch tailψb04 is the energy distance between the impurity level and
the corresponding band edges. In CdS:Ni the impurity levelE

(9)
i04

is very deep with respect
to the valence band and is shallow with respect to the conduction band. Moreover, the
nonzero value ofV07c(k = 0) leads to a cusp of the Hilbert transformMv(εc) determined
by an equation similar to equation (9) and, as a result, to a singularity of its derivative
M ′c04

(E → εc) → ∞ (see figure 2). This makes the contribution of the conduction band
dominant, and the impurity function can be written as a bonding combination

ψi04 '
[

1

/√
(1+M ′c04

)

] [
ψd +

√
M ′c04

ϕs

]
. (14)

Thus the Bloch tail dominates in the wave function of the ninth electron in the unfilled
d shell of impurity pseudoion Ni(−)(d̃9), and the impurity wave function in the wurzite
crystal CdS:Ni(−) appears to be much more extended than that in the tetrahedral ZnS:Ni(−)

crystal.

Figure 2. A schematic representation of the energy dependence of the functionM(E) (9) (a)
and its derivativeM ′(E) (12) (b) in a wurzite-type crystal. One can see that the functionM(E)

has a cusp which becomes a divergency of the functionM ′(E), which is caused by the van
Hove singularity near the conduction band edge. This sort of behaviour shows up due to the
fact that the symmetry ban existing in the zinc-blende-type crystals is now lifted.

4. Loosely bound hole

Now we turn to calculation of the hole eigenenergy,E(h)i , and its wave function,ψ(h)
iγ .

Usually the second partner in an electron–hole pair bound to a simple isoelectronic impurity
is well described by assuming a point charge potential. The effective mass approximation
with central cell corrections [19] is then applied. The latter takes into account the short-
range non-Coulomb potential of the impurity core. Since the shell of the transition metal
impurity is strongly distorted due to hybridization with band states [3, 4], the central cell
corrections are expected to be of much more importance in our case. This section discusses
the mechanisms of the hole binding which may be either due to the Coulomb long-range
potential or due to the short-range interaction depending on the symmetry of the host crystal.

Usually a loosely bound state is orthogonalized to the core states of the impurity which
results in a contribution to the impurity potential known as central cell corrections [20]. In
the case of a bound exciton the hole wave function should be orthogonalized to the wave
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function of its electron counterpart (to the swollen state of the ninth electron in the case of
an Ni impurity) as well. Therefore the hole wave function is looked for in the form

ψ
(h)
iγ = A−1/2

γ

[∑
k

F γv (k)ψ̃kv(r)+ Fγd ψiγ
]
. (15)

The first term in this expansion is the Bloch tail expanded over the Bloch functions

ψ̃kv = ψkv −
∑
λ

〈dλ̃|kv〉ψiλ. (16)

orthogonalized to all states of the Ni(−)(d̃9) pseudoion (the setλ includes theγ state of the
last outer electron). To find the coefficientsFγ one should repeat the Harrison procedure
[21] for the ‘resonance’ pseudopotential of noble and transition metals. Inserting (15) in
equation (7) one readily finds

F
γ

d = −
〈d̃γ |Ud |ψbγµ〉
(Eh + Ei0) . (17)

The factorAγ can be found from the normalization condition for the function (15). Then, in
close analogy with the case of the deep resonance state [17] we find the effective Schrödinger
equation for the band part of the loosely bound hole wave functionψbγ[
−
(
T̂ +

∑
j

U(r −Rj )
)
+ Uc(r −R0)−1Ũcc + Û res

γ − Eh
]
ψbγ (r −R0) = 0 (18)

where

Û res
γ ψbγ (r −R0) =

∫
Ures
γ (r, r′)ψbγ (r′ −R0) d3r ′

and

Ures
γ (r, r′) =

∑
γ ′

W(r)|dγ̃ ′〉〈dγ̃ ′|W(r′)
Eh + Eiγ ′ .

Here the potentialUdγ (r) of the Ni impurity with an excess electron is represented as a sum
of the Coulomb potentialUc(r−R0) and the short-range pseudopotential1Ũcc which has
the standard form as described in [21]. HereW(r) = U ′(r−R0)+U1{1ρ(r)} is the crystal
field potential in (3) due to the field of the host ions and of the distorted valence electron
density. The resonance potentialÛ res

γ and its role in the formation of bound excitons was
discussed in [3].

Inserting the orthogonalized Bloch functions (16) into (18), one arrives at the system of
linear equations for the coefficientsFγv (k) determining the wave function (15),

[Evk − Eh]Fγv (k)−
∑
k′v′

[Us
vv′(k,k

′)+ Ucc
γ,vv′(k,k

′)− Ures
γ,vv′(k,k

′)]Fγk′v′ = 0. (19)

HereUs
vv′(k,k

′) are the matrix elements of the Coulomb potential andUcc
γ,vv′(k,k

′) and
Ures
γ,vv′(k,k

′) are those of the short-range and the resonance scattering potentials respectively.
One can neglect as usual the off-diagonal matrix elements of the Coulomb potential, by
assumingUs

vv′(k,k
′) = Us

v (k,k
′)δvv′ . It should be also taken into account that this potential

is created by the charge of the exciton electron bound to the impurity with a finite localization
radius. The corresponding corrections were discussed in [2], where it was shown that they
can make the hole level more shallow provided the radius of swollen electron orbitald̃γ is
comparable with the radius of the hydrogen-like bound hole.
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The term

Ucc
γ,αα′ = 〈α|Us |α′〉 + Sαγ (Eiγ − Eh)S∗γα′ + Vαγ S∗γα′ + Sαγ V ∗γα′ (20)

is just a conventional short-range impurity pseudopotential (see, e.g., [21]). Here

〈α|Us |α′〉 = 〈α|(Vd(r −R0)− Vh(r −R0)|α′〉
is a matrix element of the substitutional potential which arises due to the difference between
the core states of the impurity and host ion;|α〉 = |kaσ 〉, Sαγ = 〈α|d̃γ 〉; Vαγ = 〈α|Ud |d̃γ 〉
are the nonorthogonality and hybridization integrals.

The contributions of the orthogonalization corrections to the central cell potential in
zinc blende and wurzite hosts are different due to the different behaviour of the ninth
electron of the Ni ions in corresponding crystalline environments. The hole wave function
is orthogonalized to all electron wave functions of the impurity, given by equation (13)
in the zinc blende ZnS and (14) in the wurzite type host CdS, respectively. Substituting
these into equation (20) one obtains that the contribution due to the Bloch tails of the
functions (13) and (14) has the form

Ucc
γ,αα′ ≈

(
M ′aγ

1+M ′aγ

)
Ud,aa′(k,k

′) (21)

where

Ud,aa′(k,k
′) = 〈ka|1EP̂γ + UdP̂γ + P̂γ Ud |k′a′〉

with P̂γ = |ϕγ 〉〈ϕγ | being the projection operator andϕγ being the Bloch tail of the impurity
wave functions (13) and (14);1E = Eiγ−Eh. Excitons bound to transition metal impurities
with a deep d state in a host with the Td (γ = 05) symmetry were studied in [2], and it was
found that both pseudopotential and resonance contributions are small if the electron wave
function is sufficiently localized. ThenM ′a0 < 1 and the term (20) is of no importance for
the formation of the hole bound state. The bound electron charge can be also considered
as nearly pointlike and the conventional effective mass approximation with the central cell
corrections is applicable to the description of the bound hole in ZnS:Ni.

The situation in a wurzite-type crystal (C3v point group,γ = 04) appears to be quite
different. The pseudopotential (21) in CdS:Ni is strongly enhanced due to the lift of the
symmetry ban for the hybridization, discussed in the previous section, which results in
M ′a04

� 1. Now this pseudopotential is responsible for the hole binding whereas the
Coulomb potential (decreased due to smearing of the electron charge in the centre) can lead
only to small corrections.

It is worthwhile to compare this situation with the results of Perel’ and Yassiyevich [22],
who have considered formation of deep levels by a short-range impurity potential. Although
the problems are very similar, two important differences are to be mentioned. The impurity
potential considered in [22] transforms according to the01 irreducible representation and
does not introduce any symmetry restrictions. The structure and symmetry features of the
levels created by such a potential are controlled by the host band structure. In our case the
impurity potential transforms according to the04 (07) irreducible representation and has
properties of the corresponding projection operator. This means that only04 band states
participate in the formation of the impurity levels. As a result the classification of the levels
to be obtained is at variance from those of [22].

The second difference is connected with the fact that [22] considers neutral impurities
whereas we deal with a charged impurity. However the corresponding Coulomb potential is
relatively weak and may introduce only small perturbations without changing the symmetry
properties of the levels. The same relates also to the resonance term in equation (18).
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The conclusion is that, provided this potential is strong enough, the hole of the bound
exciton in CdS:Ni can be described as follows.

(i) The short-range potential does not interact with the Bloch states of the topmost09

band and corresponding hydrogen-like shallow levels are formed by the Coulomb part of
the impurity potential.

(ii) The short-range pseudopotential splits a bound hole state from the subsequent07

bands with energies which may be essentially deeper than that of the hydrogen-like states.
(iii) This level turns out to be the lowest bound hole state, and it has smaller effective

radius than that of the hydrogen-like state.

Other properties of this ground state and estimates of its energy will be discussed below.

4.1. The hole binding energy

It is assumed here that in CdS:Ni it is the short-range pseudopotential (20) which forms
the bound hole states. The projection properties of this pseudopotential determine the
symmetry properties of the hole wave function which transforms according to the irreducible
transformation07 of the C6v group (which corresponds to the representation04 of the C3v

group). The other contributions such as those of the Coulomb potential and the resonant
scattering do not change the symmetry properties of the hole state and may introduce a
relatively weak perturbation. Therefore it is a good approximation to look for the coefficients
F
γ
v (k) as satisfying the equation

Fγv (k)−
1

Evk − Eh
M ′c0

1+M ′c0
∑
k′v′

Ud,vv′(k,k
′)F γv′ (k

′) = 0. (22)

Now the fact that the short-range potential (20) contains factorizable terms is explicitly
used. Introducing two auxiliary variables

AS =
∑
kv

Skv07F
γ

kv

AV =
∑
kv

Vkv07F
γ

kv

(23)

we find the system of equations

AS [1− BSS 1E − BSV ] − AVBSS = 0

−AS [1E BSV + BVV ] + AV [1− BSV ] = 0
(24)

where

BSS(Eh) = M ′c0
1+M ′c0

∑
kv

1

Evk − Eh S
∗
kv07

Skv07

BSV (Eh) = BVS(Eh) = M ′c0
1+M ′c0

∑
kv

1

Evk − Eh S
∗
kv07

Vkv07 (25)

BVV (Eh) = M ′c0
1+M ′c0

∑
kv

1

Evk − EhV
∗
kv07

Vkv07.

One can easily check that the quantities (23) and (25) are real.
The set of equations (24) has nonzero solutions if

[1− BSV (Eh)]2− BSS(Eh)[1E + BVV (Eh)] = 0 (26)
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which is the equation for the hole binding energyEh. The simplifying approximation

Vkv = V Skv
with V being a parameter characterizing the impurity potential, allows one to rewrite
equation (26) in the form

BSS(Eh) = 1/(2V +1E) (27)

which is standard for a Koster–Slater type of problem (graphical analysis of this sort of
equations for the case of zinc blende semiconductors can be found, e.g., in [4]).

Equation (27) may have a solution, meaning a localized level in the forbidden energy
gap for strong enough scattering potential on its right-hand side. The value of the function
BSS(Eh) is essentially controlled by the parameterM ′c0. The latter reflects the share of the
Bloch tail in the impurity electron wave function (see the discussion in the previous section).
This part is small in ZnS:Ni (M ′c0 < 1) and large in CdS:Ni (M ′c0 � 1). Direct estimates
show that according to equation (27) Ni may produce localized levels in the forbidden energy
gap of CdS and no levels would appear in ZnS:Ni due to this short-range pseudopotential
alone. If one, however, recollects the contribution of the electron–hole interaction to the
binding energy, the results can be summarized as follows. Ni(d9) in the tetrahedral ZnS
attracts a hole by its Coulomb potential and creates a series of hydrogen-like levels which
may be only slightly corrected by the short-range part of the potential. In contrast, the
short-range potential of Ni(d9) in the hexagonal CdS is rather strong and creates a single
hole level of04 symmetry which may be corrected by the Coulomb interaction.

4.2. The hole wave function

The coefficientsFγv which determine the behaviour of the hole wave function (15) can be
written as

Fγv (k) =
Skv07

Evk − Eh aγ (28)

where the parameteraγ should be found from the normalization condition for the
pseudowave function (see equation (22)). As a result

Fγv (k) =
Skv07

Evk − Eh
1√
M ′s

(29)

where

M ′s =
∑
k′v′

|S07k′v′ |2
(Evk − Eh)2 . (30)

Adding the core partψdγ , the normalized hole wave function (15) has the form

ψ
(h)
i04
= 1√

1+ |Fγd |2

[
1√
M ′s

∑
ka

S07ka

Eak − Eh ψ̃kv(r)+ F
γ

d ψiγ ′

]
(31)

where

F
04
d =

〈i04|W |ψb〉
Ei04 + Eh

.

Finally the bound exciton wave function (1) reads

9
(ex)
0 (d̃1

+, h) = Â
∑
0′λ

C00′λψi0′(r1)ψ
(h)
λ (r2) (32)



Intermediately bound excitons 5365

(λ = 04). Thus we see that the hole wave function has acquired a ‘core’ partψdγ due to
the resonance mechanism, so the hole state has a structure similar to that of its electron
counterpart (14) in the bound exciton state. The contribution of the Bloch tail to the electron
wave function (14) and that of the d core to the hole wave function are controlled by the
factorsM ′c04

and |Fγ4
d |2, respectively. If there are some special reasons for enhancement of

these coefficients, then the ‘equalization’ of the electron and hole wave functions mentioned
above can occur. It is seen now that swelling of the electron component (largeM ′cγ4

) results

in strong orthogonalization corrections to the hole wave function (large|F04
d |2), and the

ultimate source of these two effects is the anomalously strong hybridization of the d04

states with the conduction band states which have the same symmetry.

5. Magneto-optics of bound excitons

This section presents a comparison of various experimental observations with the predictions
of the model outlined above.

5.1. Theg-factor

The magneto-optics of Ni-bound shallow states is controlled by the value of the effective
g-factor in the Zeeman interaction

Hz = µ0[geSe ·H + ghSh ·H]. (33)

Here Sh and Se are the hole and electron spin operators, respectively. In our case the
electron spin is the total angular momentum of the Ni(d9) ion. Using the total exciton spin,
Sex = Sh + Se, the Zeeman Hamiltonian becomes

Hz = µBgexSex ·H (34)

wheregex = ge + gh. ge andgh are calculated by projecting the vectorsSe andSh onto
Sex :

ge = geffe (Se · Sex)/(Sex · Sex)
gh = K(Sh · Sex)/Sex · Sex).

(35)

The effectiveg-factor

geffe = gs + g̃L +1gL (36)

of the Ni(d̃9) electron shell includes the electron spin part,gs , and the contribution,̃gL,
of the reduced electron orbital,̃L. The third part1gL arises from the spin–orbit coupling
and other corrections. The valuegeffe is obtained from the linear Zeeman interaction of the
impurity Ni(d̃9) ion

〈ψ(Ni+)|Hz|ψ(Ni+)〉 = ± 1
2µ0H‖geffe . (37)

Thengs andg̃L are calculated using the momentaS andL̃ projected on the total momentum
J = L̃+ S,

gs = g0(S · J)/(J · J)
g̃L = γrα(L̃ · J)/J · J)

(38)

whereg0 is the free electrong-factor.
Two main competing mechanisms can be responsible for theg-value quenching [24].

The reduction factorγr results from the electron–vibration interaction (Ham effect [25])
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whose value for the d9 system is given in [26] (see also [27] for review). The reduction
factor α characterizes the second mechanism, i.e., the covalency effect resulting from the
electron delocalization [24, 28–31]. Due to strong delocalization of the Ni(d̃9) electron
wave function in CdS (14) the Ham effect is small as compared to the covalency effect.
Although the electron–vibration interaction can be of some importance in ZnS:Ni(d̃9), the
hybridization mechanism alone gives a correct value ofg even in this case. The covalency
factor α can be calculated explicitly in our model in terms of the hybridization-related
parameterM ′ (see equations (13) and (14)).

The reduced orbital momentum,〈ψ(Ni+)|L|ψ(Ni+)〉 is calculated using the well known
facts that its value isαd = −1 for a d wave function andαp = 1 for a p wave function
[24]. Equations (37) and (13) yield

geeff (Ni+) = 1

1+M ′
{

4

3
αd +

(
−2

3
+ 2M ′

)}
= 2

(
M ′ − 1

M ′ + 1

)
(39)

for ZnS:Ni. The same calculation with the wave function (14) gives

geeff (Ni+) = 1

1+M ′
{

4

3
(αd + αpM ′)− 2

3
(1+M ′)

}
= 2

3

(
M ′ − 3

M ′ + 1

)
(40)

for CdS:Ni. Thus two different expression for the electrong-factor are obtained in the two
hosts with differing lattice symmetries for the same configuration Ni(d̃9) of the impurity. It
is emphasized that the values of the parameterM ′, which is function of the bound electron
energy, differ for these two systems also very strongly.

The resulting excitong-factor for ZnS:Ni becomes

g(ex) = 1
2

(
2(M ′ − 1)/(M ′ + 1)+K)+1gL. (41)

Theg-factor for the07 electron state in ZnS:Ni is known to begeff ' −1.4 [32]. To obtain
this value from equation (39) one should assume thatM̃ ′07v

' 0.18. This small and positive
value corresponds to a deep d level in the middle of the gap which occurs in ZnS:Ni (see
figure 1). Although the parameterK for the degenerate07−08 valence band is not known,
the authors of [5] postulate the spin-like behaviour of the acceptor state with completely
quenched orbital momentum andgh-factor around two to explain the experimental value
g(ex) = 0.50 for the deeply bound exciton in this system. They emphasize that this estimate
does not work for [Ni(−)(d9), h] in CdS.

Unlike various d9 systems and particularly Ni(d9), which are known to have negative
g-factors in many host semiconductors, Ni(d9) yields a positive and largeg-value in CdS.
Using equation (40) for CdS:Ni and the largeM ′-value ofM ′04c

(E04) � 1 one arrives at
geff ' +2. This largeM ′-value is indeed expected in a wurzite-type crystal due to the lift
of the symmetry ban discussed earlier and due to proximity of the impurity04 level to the
conduction band edge (see figure 2).

The g-factor of the intermediately bound exciton is described by equation

g(ex) = 1
2

(
2
3(M

′ − 3)/(M ′ + 1)+K)+1gL. (42)

instead of (41).
As for theK-value, we believe that in a wurzite-type crystal when the above short-range

potential binds the hole from the04 degenerate valence bands the assumption of a spin-like
hole state works well. So the value ofK ≈ +2 seems to be reasonable for both crystals.
For CdS:Ni the experimental value of 2.26 for theg(ex)-factor indicates thatM ′ � 1, which
is in agreement with the above theoretical considerations.
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5.2. Classification of the exciton levels

A simpler structure of the Ni-bound exciton spectrum in CdS as compared to that in ZnS
is explained mainly by a simpler structure of the bound hole state.

Figure 3. A schematic representation of the exciton level splitting for ZnS:Ni (a) and CdS:Ni (b).

The exciton wave functions transform according to the irreducible representation0ex =
0(dn+1)× γh = 04, which is just a direct product of the electron and hole representations
0(dn+1) = 04 (07) for CdS (ZnS).

The hole s wave function in ZnS:Ni is well described within the effective mass theory,
and therefore it transforms according to the representation

γh(u) = 01× 08 = 08

or

γh(l) = 01× 07 = 07 (43)

where 08 and 07 are the representations of the upper and the lower valence bands
respectively whereas01 corresponds to the envelope s function. Using the07 representation
of the Ni+(d9) ground state in ZnS the exciton wave functions transform according to the
representations

0(ex)(u) = 07× 08 = 03+ 04+ 05

0(ex)(l) = 07× 07 = 01+ 04.
(44)

Due to the exchange interaction the upper exciton level splits into a triplet,05, and quintet,
03+ 04, and the lower one splits into a triplet,04, and singlet,01.

The pattern obtained here is standard for excitons in which the second carrier is bound
by a Coulomb field of the first one in hydrogen-like states. Accounting for the higher
hydrogen-like states more levels with more complicated structure are expected.

In the case of the intermediate-radius e–h pair in CdS:Ni the ground state of the hole
is formed by the short-range pseudopotential (20) with the projection operatorP̂04 built in.
Therefore, its wave functions transform according to the representation04.

The04 representation of the Ni+(d9) ground state in CdS:Ni gives a

0(ex) = 04× 04 = 01+ 02+ 03 (45)

representation for the exciton bound state. The exchange interaction splits this level into
a singlet,02, and a triplet,01 + 03. The latter state was observed experimentally in [5].
The 02 level does not show up in this experiment since the02–04 dipole transitions are
symmetry forbidden.
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Hydrogen-like bound hole states are also possible but these should be looked for very
close to the charge transfer edge band with very small binding energy as a result of the
Coulomb potential weakness.

5.3. Bound exciton energy

Now we return to the problem of the exciton binding energy. The energy which is required
to form acceptor excitons bound to transition metal impurities (2) can be represented as

Ebex = Ei(0/−)+ Eh.
The energyEbex is directly determined from optical experiments. However, the electron
ionization energy,Ei(0/−), can be found only from a numerical fit of the charge transfer
bands to some theoretical curve describing the ionization cross-section near the threshold.

The exciton hole energy in CdS was found to be about 140 meV [5]. This energy
should be compared with that for ZnS, but different measurements gave differing results for
this system. The first numerical data for ZnS:Ni were presented by Kazanskii and Ryskin
[23], who estimated the exciton hole binding energy as≈ 170 meV. Later Noras and Allen
[8] extracted the value ofEv0 ≈ 20 meV from their optical absorption measurements. The
recent data of Heitzet al [5] gaveEv0 = 108 meV. The difference in the results is due to
the different methods used to derive the ionization energy,Ei(0/−).

The well known method of processing the experimental data is by using a Lucovsky-
type law for the threshold behaviour of absorption coefficientα ∼ (h̄ω − Ei)n. Noras
and Allen have chosenn = 3

2 whereas Heitzet al [5] used a method based on the
investigation of the energy transfer processes between different transition metal centres
by excitation spectroscopy. In both cases then = 1

2 characteristic of the allowed dipole
transitions is neglected. From the theoretical point of view the photoionization reaction
Ni2+(e4t42) → Ni+(e4t52) + hp should contain both allowed and forbidden components
[33] because the nintht2 electron wave function consists of the d and p partial waves
in accordance with equation (13), thus a component withn = 1

2 should also be taken
into account. Although the recent data show that the hole binding energy seems to be
larger for the Ni-bound hole in CdS than for that in ZnS, the information available is still
contradictory. In any case, we conclude from the above discussion that there are many
sources of violation of the simple hydrogen-like estimation of the acceptor energy (which
is estimated to be'170 meV in ZnS [3])). Some of these mechanisms are common for
ZnS and CdS.

6. Summary

We have found that there are reasons for introducing the intermediately bound exciton
concept at least in the case of CdS:Ni, although one should not speak literally about a
neutral Ni(2+) ion capturing a loosely bound electron and hole. We have seen that the
difference between the bound exciton states in zinc blende ZnS:Ni and wurzite CdS:Ni
systems is first of all due to the lower symmetry of the latter crystal. It is also important
that the relevant impurity deep level is close enough to the bottom of the conduction band.
Only then does the enhancement of the d–s hybridization play a really important part.

The structures of the bound exciton wave functions in the two cases are strongly at
variance. The tetrahedral system ZnS:Ni is characterized by standard excitons bound to
the transition metal impurity as described, e.g., in review [3]. The electron is bound in
a strongly localized d state while the hole is loosely bound by the Coulomb field of the
electron.
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Intermediately bound excitons are typical for the hexagonal system CdS:Ni. The wave
function of the ninth electron of the Ni(d̃9) pseudoion is swollen strongly due to the
hybridization of the d states with the Bloch states at the bottom of the conduction band. The
hole is bound by the short-range pseudopotential, which has properties of a07 projection
operator. In contrast to the zinc blende system the Coulomb potential of the ninth electron
is less important and may result only in small corrections.

The importance of the proximity of the deep levels to the bottom of the conduction band
can be seen for examples in the systems like CdS:Cu and the wurzite phase of ZnS doped
by Ni. In both systems the relevant deep level lies rather far from the conduction band
and intermediate bound excitons do not appear. However, these excitons are clearly seen in
ZnO:Cu (detailed discussion of the properties of this system will be published elsewhere).

The most important manifestation of the differences between ZnS:Ni and CdS:Ni is
completely different values of the excitong-factors, which are now readily explained by
the different localization and symmetries of the exciton wave functions. The differences in
the Zeeman spectra are also accounted for by the same mechanism. We should mention
also the shift of the binding energy of the CdS:Ni exciton as well as some other physical
properties of these systems which can be understood within our model.

There are various consequences of this model which can be checked experimentally.
One of these can be mentioned here. The principal point of the model is the appearance of
the s–d hybridization with the conduction band states in low-symmetry crystals. This makes
us think that, being able to induce a transition from a tetrahedral to a hexagonal lattice,
say, by a strong enough uniaxial pressure, we will be also able to convert an exciton bound
deeply to a transition metal impurity into an intermediate one with corresponding changes
of its spectral features. Observation of such a transition would be considered as a direct
test of the model.

Appendix. The electron part

Here the Bloch tail√
M̃ ′v05

ψbt2 =
∑
kaσ

〈t2µ|U ′| ˜kaσ 〉
Ekaσ − Ei ψ̃kaσ (A1)

of the impurity wave function (11) is calculated. Assuming that the main contribution is
from the vicinity of the0 point of the banda (valence or conduction) allows one to use
the following approximation. It is assumed that

〈at2µ|W |kãσ 〉 ≈ Vat2.
The basis of the orthogonalized Bloch functions,ψ̃ka is substituted by the set of Kohn–
Luttinger functionsχ̃ka(r) = ũ0a(r) exp(−ik · r) with the Bloch amplitude atk = 0

ũ0a(r) = u0a(r)−
∑
γµ

〈γµ|u0a〉ψγµ

orthogonalized to the core states.
As a result the tail wave function reads√

M̃ ′a05
ψbt2 ' (a0)

3
∑
a

(±)Ṽat2
∑
k

exp(−ik · r)
|E07 − E0a| + h̄k2/2m∗a

ũoa(r) (A2)

the+ or − signs appearing if the contribution originates from the conduction or a valence
band respectively.
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Replacing summation overk by an integration yields√
M̃ ′a05

ψbt2 ' (a0)
3
∑
a

(±)Ṽat2
2m∗

h̄2

ũ0a(r)

4π

e−kar

r
. (A3)

wherek2
a = (2m∗107/h̄

2) and107 = |E07 − E0a|. This tail function could be presented as√
M̃ ′a05

ψbt2 '
∑
a

(±)
(
a0

a0

)3 1

4π

Ṽat2

10

ũoa
e−kar

kar
(A4)

whereṼat2 is a typical value of the hybridization with the banda.
The normalized wave function of the tail part is√

M̃ ′a05
ψbt2 =

∑
a

(±) Ṽat2
10

ϕa(r) (A5)

where

ϕa(r) =
(∫ ∣∣∣∣ũ0a(r)

e−kar

kar

∣∣∣∣2 d3r

)−1/2

ũ0a(r)
e−kar

kar
.
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